MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. EN 1.7379 Steel

Both AISI 441 stainless steel and EN 1.7379 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is EN 1.7379 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
21
Fatigue Strength, MPa 180
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 470
670
Tensile Strength: Yield (Proof), MPa 270
460

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 910
460
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
3.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.8
Embodied Energy, MJ/kg 41
23
Embodied Water, L/kg 130
59

Common Calculations

PREN (Pitting Resistance) 19
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 6.1
11
Thermal Shock Resistance, points 16
19

Alloy Composition

Carbon (C), % 0 to 0.030
0.13 to 0.2
Chromium (Cr), % 17.5 to 19.5
2.0 to 2.5
Iron (Fe), % 76 to 82.2
94.5 to 96.5
Manganese (Mn), % 0 to 1.0
0.5 to 0.9
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.1 to 0.5
0