MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. C51000 Bronze

AISI 441 stainless steel belongs to the iron alloys classification, while C51000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is C51000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.7 to 64
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 77
26 to 97
Shear Modulus, GPa 77
42
Shear Strength, MPa 300
250 to 460
Tensile Strength: Ultimate (UTS), MPa 470
330 to 780
Tensile Strength: Yield (Proof), MPa 270
130 to 750

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1440
1050
Melting Onset (Solidus), °C 1400
960
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
77
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
18
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
18

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
7.0 to 490
Resilience: Unit (Modulus of Resilience), kJ/m3 190
75 to 2490
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
10 to 25
Strength to Weight: Bending, points 17
12 to 21
Thermal Diffusivity, mm2/s 6.1
23
Thermal Shock Resistance, points 16
12 to 28

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
92.9 to 95.5
Iron (Fe), % 76 to 82.2
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
4.5 to 5.8
Titanium (Ti), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5