MakeItFrom.com
Menu (ESC)

AISI 441 Stainless Steel vs. S32205 Stainless Steel

Both AISI 441 stainless steel and S32205 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 441 stainless steel and the bottom bar is S32205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
260
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 180
370
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
80
Shear Strength, MPa 300
480
Tensile Strength: Ultimate (UTS), MPa 470
740
Tensile Strength: Yield (Proof), MPa 270
510

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 550
440
Maximum Temperature: Mechanical, °C 910
1070
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
18
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.7
Embodied Energy, MJ/kg 41
50
Embodied Water, L/kg 130
160

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
190
Resilience: Unit (Modulus of Resilience), kJ/m3 190
630
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 17
23
Thermal Diffusivity, mm2/s 6.1
4.0
Thermal Shock Resistance, points 16
20

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
22 to 23
Iron (Fe), % 76 to 82.2
63.7 to 70.4
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 3.5
Nickel (Ni), % 0 to 1.0
4.5 to 6.5
Niobium (Nb), % 0.3 to 0.9
0
Nitrogen (N), % 0 to 0.030
0.14 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.1 to 0.5
0