MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. AISI 308 Stainless Steel

Both AISI 444 stainless steel and AISI 308 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is AISI 308 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
45
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 83
76
Shear Modulus, GPa 78
78
Shear Strength, MPa 300
410
Tensile Strength: Ultimate (UTS), MPa 470
590
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 580
420
Maximum Temperature: Mechanical, °C 930
990
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
17
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 47
46
Embodied Water, L/kg 130
150

Common Calculations

PREN (Pitting Resistance) 26
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
210
Resilience: Unit (Modulus of Resilience), kJ/m3 240
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.2
4.1
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.080
Chromium (Cr), % 17.5 to 19.5
19 to 21
Iron (Fe), % 73.3 to 80.8
64.1 to 71
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
10 to 12
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0