MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. EN 1.3955 Stainless Steel

Both AISI 444 stainless steel and EN 1.3955 stainless steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is EN 1.3955 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
23
Fatigue Strength, MPa 210
150
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Tensile Strength: Ultimate (UTS), MPa 470
520
Tensile Strength: Yield (Proof), MPa 310
220

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 580
410
Maximum Temperature: Mechanical, °C 930
930
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 15
16
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
95
Resilience: Unit (Modulus of Resilience), kJ/m3 240
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 6.2
4.1
Thermal Shock Resistance, points 16
15

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.15
Chromium (Cr), % 17.5 to 19.5
16.5 to 18.5
Iron (Fe), % 73.3 to 80.8
65.5 to 73.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 1.8 to 2.5
0 to 0.75
Nickel (Ni), % 0 to 1.0
10 to 12
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0