MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. CC481K Bronze

AISI 444 stainless steel belongs to the iron alloys classification, while CC481K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is CC481K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 470
350
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 930
170
Melting Completion (Liquidus), °C 1460
1000
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 23
64
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 15
35
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 47
60
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
13
Resilience: Unit (Modulus of Resilience), kJ/m3 240
150
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
11
Strength to Weight: Bending, points 17
13
Thermal Diffusivity, mm2/s 6.2
20
Thermal Shock Resistance, points 16
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
87 to 89.5
Iron (Fe), % 73.3 to 80.8
0 to 0.1
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0 to 0.1
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 1.0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
10 to 11.5
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.5