MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. C21000 Brass

AISI 444 stainless steel belongs to the iron alloys classification, while C21000 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is C21000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.9 to 50
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 83
36 to 73
Shear Modulus, GPa 78
43
Shear Strength, MPa 300
180 to 280
Tensile Strength: Ultimate (UTS), MPa 470
240 to 450
Tensile Strength: Yield (Proof), MPa 310
69 to 440

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 930
190
Melting Completion (Liquidus), °C 1460
1070
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
230
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
57

Otherwise Unclassified Properties

Base Metal Price, % relative 15
30
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 47
42
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
13 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 240
21 to 830
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
7.4 to 14
Strength to Weight: Bending, points 17
9.6 to 15
Thermal Diffusivity, mm2/s 6.2
69
Thermal Shock Resistance, points 16
8.1 to 15

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
94 to 96
Iron (Fe), % 73.3 to 80.8
0 to 0.050
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
3.7 to 6.0
Residuals, % 0
0 to 0.2