MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. C33000 Brass

AISI 444 stainless steel belongs to the iron alloys classification, while C33000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is C33000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
7.0 to 60
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 78
40
Shear Strength, MPa 300
240 to 300
Tensile Strength: Ultimate (UTS), MPa 470
320 to 520
Tensile Strength: Yield (Proof), MPa 310
110 to 450

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 930
130
Melting Completion (Liquidus), °C 1460
940
Melting Onset (Solidus), °C 1420
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 23
120
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 15
24
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.4
2.7
Embodied Energy, MJ/kg 47
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
35 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 240
60 to 950
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
11 to 18
Strength to Weight: Bending, points 17
13 to 18
Thermal Diffusivity, mm2/s 6.2
37
Thermal Shock Resistance, points 16
11 to 17

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
65 to 68
Iron (Fe), % 73.3 to 80.8
0 to 0.070
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
30.8 to 34.8
Residuals, % 0
0 to 0.4