MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. C51900 Bronze

AISI 444 stainless steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
14 to 29
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 83
42 to 91
Shear Modulus, GPa 78
42
Shear Strength, MPa 300
320 to 370
Tensile Strength: Ultimate (UTS), MPa 470
380 to 620
Tensile Strength: Yield (Proof), MPa 310
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 930
180
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1420
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 23
66
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 15
33
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 47
51
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 240
680 to 1450
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 17
12 to 19
Strength to Weight: Bending, points 17
13 to 18
Thermal Diffusivity, mm2/s 6.2
20
Thermal Shock Resistance, points 16
14 to 22

Alloy Composition

Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
91.7 to 95
Iron (Fe), % 73.3 to 80.8
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0.030 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.0 to 7.0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5