MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. C95800 Bronze

AISI 444 stainless steel belongs to the iron alloys classification, while C95800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 470
660
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 930
230
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 23
36
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 15
29
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.4
3.4
Embodied Energy, MJ/kg 47
55
Embodied Water, L/kg 130
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
310
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 6.2
9.9
Thermal Shock Resistance, points 16
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
79 to 83.2
Iron (Fe), % 73.3 to 80.8
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.2 to 0.8
0
Residuals, % 0
0 to 0.5