MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. S32906 Stainless Steel

Both AISI 444 stainless steel and S32906 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 23
28
Fatigue Strength, MPa 210
460
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 300
550
Tensile Strength: Ultimate (UTS), MPa 470
850
Tensile Strength: Yield (Proof), MPa 310
620

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 580
460
Maximum Temperature: Mechanical, °C 930
1100
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
13
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 15
20
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
3.7
Embodied Energy, MJ/kg 47
52
Embodied Water, L/kg 130
190

Common Calculations

PREN (Pitting Resistance) 26
41
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
220
Resilience: Unit (Modulus of Resilience), kJ/m3 240
950
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
30
Strength to Weight: Bending, points 17
26
Thermal Diffusivity, mm2/s 6.2
3.6
Thermal Shock Resistance, points 16
23

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
28 to 30
Copper (Cu), % 0
0 to 0.8
Iron (Fe), % 73.3 to 80.8
56.6 to 63.6
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 1.8 to 2.5
1.5 to 2.6
Nickel (Ni), % 0 to 1.0
5.8 to 7.5
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0.3 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0