MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. S43940 Stainless Steel

Both AISI 444 stainless steel and S43940 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
21
Fatigue Strength, MPa 210
180
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 83
76
Shear Modulus, GPa 78
77
Shear Strength, MPa 300
310
Tensile Strength: Ultimate (UTS), MPa 470
490
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 580
540
Maximum Temperature: Mechanical, °C 930
890
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 130
120

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
86
Resilience: Unit (Modulus of Resilience), kJ/m3 240
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 6.2
6.8
Thermal Shock Resistance, points 16
18

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
17.5 to 18.5
Iron (Fe), % 73.3 to 80.8
78.2 to 82.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.8 to 2.5
0
Nickel (Ni), % 0 to 1.0
0
Niobium (Nb), % 0.2 to 0.8
0.3 to 0.6
Nitrogen (N), % 0 to 0.035
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0.1 to 0.6