MakeItFrom.com
Menu (ESC)

AISI 444 Stainless Steel vs. S64512 Stainless Steel

Both AISI 444 stainless steel and S64512 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 444 stainless steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 210
540
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 300
700
Tensile Strength: Ultimate (UTS), MPa 470
1140
Tensile Strength: Yield (Proof), MPa 310
890

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 580
390
Maximum Temperature: Mechanical, °C 930
750
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 23
28
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.3
Embodied Energy, MJ/kg 47
47
Embodied Water, L/kg 130
110

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
180
Resilience: Unit (Modulus of Resilience), kJ/m3 240
2020
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
40
Strength to Weight: Bending, points 17
31
Thermal Diffusivity, mm2/s 6.2
7.5
Thermal Shock Resistance, points 16
42

Alloy Composition

Carbon (C), % 0 to 0.025
0.080 to 0.15
Chromium (Cr), % 17.5 to 19.5
11 to 12.5
Iron (Fe), % 73.3 to 80.8
80.6 to 84.7
Manganese (Mn), % 0 to 1.0
0.5 to 0.9
Molybdenum (Mo), % 1.8 to 2.5
1.5 to 2.0
Nickel (Ni), % 0 to 1.0
2.0 to 3.0
Niobium (Nb), % 0.2 to 0.8
0
Nitrogen (N), % 0 to 0.035
0.010 to 0.050
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0.2 to 0.8
0
Vanadium (V), % 0
0.25 to 0.4