MakeItFrom.com
Menu (ESC)

AISI 445 Stainless Steel vs. AISI 405 Stainless Steel

Both AISI 445 stainless steel and AISI 405 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 445 stainless steel and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 160
130
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 71
76
Shear Modulus, GPa 78
76
Shear Strength, MPa 310
300
Tensile Strength: Ultimate (UTS), MPa 480
470
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 480
390
Maximum Temperature: Mechanical, °C 950
820
Melting Completion (Liquidus), °C 1440
1530
Melting Onset (Solidus), °C 1390
1480
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
30
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.0
Embodied Energy, MJ/kg 38
28
Embodied Water, L/kg 130
100

Common Calculations

PREN (Pitting Resistance) 20
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
84
Resilience: Unit (Modulus of Resilience), kJ/m3 140
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 5.6
8.1
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 19 to 21
11.5 to 14.5
Copper (Cu), % 0.3 to 0.6
0
Iron (Fe), % 74.9 to 80.7
82.5 to 88.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.6
0 to 0.6
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.012
0 to 0.030