MakeItFrom.com
Menu (ESC)

AISI 445 Stainless Steel vs. EN 1.4931 Steel

Both AISI 445 stainless steel and EN 1.4931 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 445 stainless steel and the bottom bar is EN 1.4931 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
17
Fatigue Strength, MPa 160
410
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Tensile Strength: Ultimate (UTS), MPa 480
810
Tensile Strength: Yield (Proof), MPa 230
620

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 950
600
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
24
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 38
42
Embodied Water, L/kg 130
100

Common Calculations

PREN (Pitting Resistance) 20
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
130
Resilience: Unit (Modulus of Resilience), kJ/m3 140
970
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
29
Strength to Weight: Bending, points 18
25
Thermal Diffusivity, mm2/s 5.6
6.5
Thermal Shock Resistance, points 16
22

Alloy Composition

Carbon (C), % 0 to 0.020
0.2 to 0.26
Chromium (Cr), % 19 to 21
11.3 to 12.2
Copper (Cu), % 0.3 to 0.6
0
Iron (Fe), % 74.9 to 80.7
83.2 to 86.8
Manganese (Mn), % 0 to 1.0
0.5 to 0.8
Molybdenum (Mo), % 0
1.0 to 1.2
Nickel (Ni), % 0 to 0.6
0 to 1.0
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.012
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0.25 to 0.35