MakeItFrom.com
Menu (ESC)

AISI 445 Stainless Steel vs. S32808 Stainless Steel

Both AISI 445 stainless steel and S32808 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 82% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 445 stainless steel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
270
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 25
17
Fatigue Strength, MPa 160
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 78
81
Shear Strength, MPa 310
480
Tensile Strength: Ultimate (UTS), MPa 480
780
Tensile Strength: Yield (Proof), MPa 230
570

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 480
460
Maximum Temperature: Mechanical, °C 950
1100
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 21
14
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.0
Embodied Energy, MJ/kg 38
57
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 20
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 18
24
Thermal Diffusivity, mm2/s 5.6
3.8
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 19 to 21
27 to 27.9
Copper (Cu), % 0.3 to 0.6
0
Iron (Fe), % 74.9 to 80.7
58.1 to 62.8
Manganese (Mn), % 0 to 1.0
0 to 1.1
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.6
7.0 to 8.2
Niobium (Nb), % 0 to 0.8
0
Nitrogen (N), % 0 to 0.030
0.3 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.012
0 to 0.010
Tungsten (W), % 0
2.1 to 2.5