MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. 5182 Aluminum

AISI 446 stainless steel belongs to the iron alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 23
1.1 to 12
Fatigue Strength, MPa 200
100 to 130
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 360
170 to 240
Tensile Strength: Ultimate (UTS), MPa 570
280 to 420
Tensile Strength: Yield (Proof), MPa 300
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 1180
180
Melting Completion (Liquidus), °C 1510
640
Melting Onset (Solidus), °C 1430
590
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 17
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
94

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.4
8.9
Embodied Energy, MJ/kg 35
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 230
120 to 950
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
51
Strength to Weight: Axial, points 21
29 to 44
Strength to Weight: Bending, points 20
36 to 47
Thermal Diffusivity, mm2/s 4.6
53
Thermal Shock Resistance, points 19
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 69.2 to 77
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15