MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. AISI 314 Stainless Steel

Both AISI 446 stainless steel and AISI 314 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 78% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is AISI 314 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
45
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.27
0.28
Reduction in Area, % 50
57
Shear Modulus, GPa 79
78
Shear Strength, MPa 360
410
Tensile Strength: Ultimate (UTS), MPa 570
590
Tensile Strength: Yield (Proof), MPa 300
230

Thermal Properties

Latent Heat of Fusion, J/g 290
330
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 1180
1100
Melting Completion (Liquidus), °C 1510
1380
Melting Onset (Solidus), °C 1430
1340
Specific Heat Capacity, J/kg-K 490
490
Thermal Conductivity, W/m-K 17
15
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
25
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.4
4.3
Embodied Energy, MJ/kg 35
62
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 27
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
210
Resilience: Unit (Modulus of Resilience), kJ/m3 230
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
21
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.6
3.9
Thermal Shock Resistance, points 19
14

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.25
Chromium (Cr), % 23 to 27
23 to 26
Iron (Fe), % 69.2 to 77
46.7 to 56.5
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 0 to 0.75
19 to 22
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
1.5 to 3.0
Sulfur (S), % 0 to 0.030
0 to 0.030