MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. AWS BNi-4

AISI 446 stainless steel belongs to the iron alloys classification, while AWS BNi-4 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (18, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is AWS BNi-4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
180
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
67
Tensile Strength: Ultimate (UTS), MPa 570
430

Thermal Properties

Latent Heat of Fusion, J/g 290
340
Melting Completion (Liquidus), °C 1510
1070
Melting Onset (Solidus), °C 1430
980
Specific Heat Capacity, J/kg-K 490
470
Thermal Expansion, µm/m-K 11
11

Otherwise Unclassified Properties

Base Metal Price, % relative 12
60
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 2.4
10
Embodied Energy, MJ/kg 35
140
Embodied Water, L/kg 150
220

Common Calculations

Stiffness to Weight: Axial, points 15
12
Stiffness to Weight: Bending, points 26
22
Strength to Weight: Axial, points 21
14
Strength to Weight: Bending, points 20
15
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Boron (B), % 0
1.5 to 2.2
Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0
0 to 0.1
Iron (Fe), % 69.2 to 77
0 to 1.5
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
91.4 to 95.5
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
3.0 to 4.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5