MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. AZ91D Magnesium

AISI 446 stainless steel belongs to the iron alloys classification, while AZ91D magnesium belongs to the magnesium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is AZ91D magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
60 to 80
Elastic (Young's, Tensile) Modulus, GPa 200
46
Elongation at Break, % 23
2.3 to 4.5
Fatigue Strength, MPa 200
74 to 85
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
18
Shear Strength, MPa 360
120 to 140
Tensile Strength: Ultimate (UTS), MPa 570
160 to 220
Tensile Strength: Yield (Proof), MPa 300
80 to 130

Thermal Properties

Latent Heat of Fusion, J/g 290
350
Maximum Temperature: Mechanical, °C 1180
130
Melting Completion (Liquidus), °C 1510
600
Melting Onset (Solidus), °C 1430
490
Specific Heat Capacity, J/kg-K 490
990
Thermal Conductivity, W/m-K 17
78
Thermal Expansion, µm/m-K 11
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
58

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
1.7
Embodied Carbon, kg CO2/kg material 2.4
22
Embodied Energy, MJ/kg 35
160
Embodied Water, L/kg 150
990

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.2 to 7.7
Resilience: Unit (Modulus of Resilience), kJ/m3 230
69 to 170
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 26
69
Strength to Weight: Axial, points 21
26 to 34
Strength to Weight: Bending, points 20
38 to 46
Thermal Diffusivity, mm2/s 4.6
45
Thermal Shock Resistance, points 19
9.5 to 13

Alloy Composition

Aluminum (Al), % 0
8.3 to 9.7
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
0 to 0.030
Iron (Fe), % 69.2 to 77
0 to 0.0050
Magnesium (Mg), % 0
88.7 to 91.2
Manganese (Mn), % 0 to 1.5
0.15 to 0.5
Nickel (Ni), % 0 to 0.75
0 to 0.0020
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0.35 to 1.0