MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C32000 Brass

AISI 446 stainless steel belongs to the iron alloys classification, while C32000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C32000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
6.8 to 29
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
41
Shear Strength, MPa 360
180 to 280
Tensile Strength: Ultimate (UTS), MPa 570
270 to 470
Tensile Strength: Yield (Proof), MPa 300
78 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1180
170
Melting Completion (Liquidus), °C 1510
1020
Melting Onset (Solidus), °C 1430
990
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
37

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 35
42
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 230
28 to 680
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 21
8.8 to 15
Strength to Weight: Bending, points 20
11 to 16
Thermal Diffusivity, mm2/s 4.6
47
Thermal Shock Resistance, points 19
9.5 to 16

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
83.5 to 86.5
Iron (Fe), % 69.2 to 77
0 to 0.1
Lead (Pb), % 0
1.5 to 2.2
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0 to 0.25
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
10.6 to 15
Residuals, % 0
0 to 0.4