MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C46500 Brass

AISI 446 stainless steel belongs to the iron alloys classification, while C46500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 23
18 to 50
Poisson's Ratio 0.27
0.31
Rockwell B Hardness 84
55 to 95
Shear Modulus, GPa 79
40
Shear Strength, MPa 360
280 to 380
Tensile Strength: Ultimate (UTS), MPa 570
380 to 610
Tensile Strength: Yield (Proof), MPa 300
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1180
120
Melting Completion (Liquidus), °C 1510
900
Melting Onset (Solidus), °C 1430
890
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 35
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 230
170 to 1170
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 21
13 to 21
Strength to Weight: Bending, points 20
15 to 20
Thermal Diffusivity, mm2/s 4.6
38
Thermal Shock Resistance, points 19
13 to 20

Alloy Composition

Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 69.2 to 77
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4