MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C50100 Bronze

AISI 446 stainless steel belongs to the iron alloys classification, while C50100 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C50100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
40
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 360
180
Tensile Strength: Ultimate (UTS), MPa 570
270
Tensile Strength: Yield (Proof), MPa 300
82

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1180
200
Melting Completion (Liquidus), °C 1510
1080
Melting Onset (Solidus), °C 1430
1070
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
230
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
55
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
55

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 35
42
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
82
Resilience: Unit (Modulus of Resilience), kJ/m3 230
29
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 21
8.3
Strength to Weight: Bending, points 20
10
Thermal Diffusivity, mm2/s 4.6
66
Thermal Shock Resistance, points 19
9.5

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Copper (Cu), % 0
98.6 to 99.49
Iron (Fe), % 69.2 to 77
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.050
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.8
Residuals, % 0
0 to 0.5