MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C66300 Brass

AISI 446 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.3 to 22
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Shear Strength, MPa 360
290 to 470
Tensile Strength: Ultimate (UTS), MPa 570
460 to 810
Tensile Strength: Yield (Proof), MPa 300
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1180
180
Melting Completion (Liquidus), °C 1510
1050
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 17
110
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
26

Otherwise Unclassified Properties

Base Metal Price, % relative 12
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 35
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 230
710 to 2850
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 21
15 to 26
Strength to Weight: Bending, points 20
15 to 22
Thermal Diffusivity, mm2/s 4.6
32
Thermal Shock Resistance, points 19
16 to 28

Alloy Composition

Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 69.2 to 77
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5