MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. C68800 Brass

AISI 446 stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 23
2.0 to 36
Poisson's Ratio 0.27
0.32
Rockwell B Hardness 84
81 to 99
Shear Modulus, GPa 79
41
Shear Strength, MPa 360
380 to 510
Tensile Strength: Ultimate (UTS), MPa 570
570 to 890
Tensile Strength: Yield (Proof), MPa 300
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1180
160
Melting Completion (Liquidus), °C 1510
960
Melting Onset (Solidus), °C 1430
950
Specific Heat Capacity, J/kg-K 490
400
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
20

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.4
2.8
Embodied Energy, MJ/kg 35
48
Embodied Water, L/kg 150
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230
710 to 2860
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 21
19 to 30
Strength to Weight: Bending, points 20
19 to 25
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 19
19 to 30

Alloy Composition

Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 23 to 27
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 69.2 to 77
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 0 to 0.75
0
Nitrogen (N), % 0 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5