MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. R30556 Alloy

Both AISI 446 stainless steel and R30556 alloy are iron alloys. Both are furnished in the annealed condition. They have 53% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 23
45
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
81
Shear Strength, MPa 360
550
Tensile Strength: Ultimate (UTS), MPa 570
780
Tensile Strength: Yield (Proof), MPa 300
350

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1180
1100
Melting Completion (Liquidus), °C 1510
1420
Melting Onset (Solidus), °C 1430
1330
Specific Heat Capacity, J/kg-K 490
450
Thermal Conductivity, W/m-K 17
11
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 12
70
Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.4
8.7
Embodied Energy, MJ/kg 35
130
Embodied Water, L/kg 150
300

Common Calculations

PREN (Pitting Resistance) 27
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
290
Resilience: Unit (Modulus of Resilience), kJ/m3 230
290
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
23
Strength to Weight: Axial, points 21
26
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 4.6
2.9
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.2
0.050 to 0.15
Chromium (Cr), % 23 to 27
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 69.2 to 77
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 1.5
0.5 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.75
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.25
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1