MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. S20910 Stainless Steel

Both AISI 446 stainless steel and S20910 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is S20910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
230 to 290
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
14 to 39
Fatigue Strength, MPa 200
310 to 460
Poisson's Ratio 0.27
0.28
Reduction in Area, % 50
56 to 62
Shear Modulus, GPa 79
79
Shear Strength, MPa 360
500 to 570
Tensile Strength: Ultimate (UTS), MPa 570
780 to 940
Tensile Strength: Yield (Proof), MPa 300
430 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
460
Maximum Temperature: Mechanical, °C 1180
1080
Melting Completion (Liquidus), °C 1510
1420
Melting Onset (Solidus), °C 1430
1380
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
13
Thermal Expansion, µm/m-K 11
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
4.8
Embodied Energy, MJ/kg 35
68
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 27
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 230
460 to 1640
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
28 to 33
Strength to Weight: Bending, points 20
24 to 27
Thermal Diffusivity, mm2/s 4.6
3.6
Thermal Shock Resistance, points 19
17 to 21

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.060
Chromium (Cr), % 23 to 27
20.5 to 23.5
Iron (Fe), % 69.2 to 77
52.1 to 62.1
Manganese (Mn), % 0 to 1.5
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.75
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0 to 0.25
0.2 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.1 to 0.3