MakeItFrom.com
Menu (ESC)

AISI 446 Stainless Steel vs. S39277 Stainless Steel

Both AISI 446 stainless steel and S39277 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AISI 446 stainless steel and the bottom bar is S39277 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
250
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
28
Fatigue Strength, MPa 200
480
Poisson's Ratio 0.27
0.27
Reduction in Area, % 50
57
Shear Modulus, GPa 79
80
Shear Strength, MPa 360
600
Tensile Strength: Ultimate (UTS), MPa 570
930
Tensile Strength: Yield (Proof), MPa 300
660

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1180
1100
Melting Completion (Liquidus), °C 1510
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.4
4.2
Embodied Energy, MJ/kg 35
59
Embodied Water, L/kg 150
180

Common Calculations

PREN (Pitting Resistance) 27
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 230
1070
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 21
33
Strength to Weight: Bending, points 20
27
Thermal Diffusivity, mm2/s 4.6
4.2
Thermal Shock Resistance, points 19
26

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.025
Chromium (Cr), % 23 to 27
24 to 26
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 69.2 to 77
56.8 to 64.3
Manganese (Mn), % 0 to 1.5
0 to 0.8
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.75
6.5 to 8.0
Nitrogen (N), % 0 to 0.25
0.23 to 0.33
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.030
0 to 0.0020
Tungsten (W), % 0
0.8 to 1.2