MakeItFrom.com
Menu (ESC)

AISI W1 Steel vs. N10675 Nickel

AISI W1 steel belongs to the iron alloys classification, while N10675 nickel belongs to the nickel alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AISI W1 steel and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
220
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
85
Tensile Strength: Ultimate (UTS), MPa 590 to 2320
860

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 48
11
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
80
Density, g/cm3 7.8
9.3
Embodied Carbon, kg CO2/kg material 1.6
16
Embodied Energy, MJ/kg 21
210
Embodied Water, L/kg 47
280

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 21 to 83
26
Strength to Weight: Bending, points 20 to 50
22
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 22 to 85
26

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0.7 to 1.5
0 to 0.010
Chromium (Cr), % 0 to 0.15
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.2
0 to 0.2
Iron (Fe), % 96.4 to 98.9
1.0 to 3.0
Manganese (Mn), % 0.35 to 0.73
0 to 3.0
Molybdenum (Mo), % 0 to 0.1
27 to 32
Nickel (Ni), % 0 to 0.2
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0.1 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.025
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 0.15
0 to 3.0
Vanadium (V), % 0 to 0.1
0 to 0.2
Zinc (Zn), % 0
0 to 0.1