MakeItFrom.com
Menu (ESC)

AISI W5 Steel vs. EN AC-45000 Aluminum

AISI W5 steel belongs to the iron alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AISI W5 steel and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 72
27
Tensile Strength: Ultimate (UTS), MPa 600 to 2360
180

Thermal Properties

Latent Heat of Fusion, J/g 250
470
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
520
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 45
120
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
81

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.6
7.7
Embodied Energy, MJ/kg 21
140
Embodied Water, L/kg 48
1070

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 21 to 84
17
Strength to Weight: Bending, points 20 to 50
24
Thermal Diffusivity, mm2/s 12
47
Thermal Shock Resistance, points 20 to 78
8.0

Alloy Composition

Aluminum (Al), % 0
82.2 to 91.8
Carbon (C), % 1.1 to 1.2
0
Chromium (Cr), % 0.4 to 0.6
0 to 0.15
Copper (Cu), % 0 to 0.2
3.0 to 5.0
Iron (Fe), % 96.6 to 98.4
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 0.1 to 0.4
0.2 to 0.65
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0 to 0.45
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.1 to 0.4
5.0 to 7.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 0 to 0.15
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35