MakeItFrom.com
Menu (ESC)

AISI W5 Steel vs. CC496K Bronze

AISI W5 steel belongs to the iron alloys classification, while CC496K bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AISI W5 steel and the bottom bar is CC496K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
97
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 72
36
Tensile Strength: Ultimate (UTS), MPa 600 to 2360
210

Thermal Properties

Latent Heat of Fusion, J/g 250
170
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
820
Specific Heat Capacity, J/kg-K 470
340
Thermal Conductivity, W/m-K 45
52
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
31
Density, g/cm3 7.8
9.2
Embodied Carbon, kg CO2/kg material 1.6
3.3
Embodied Energy, MJ/kg 21
52
Embodied Water, L/kg 48
380

Common Calculations

Stiffness to Weight: Axial, points 13
5.9
Stiffness to Weight: Bending, points 24
17
Strength to Weight: Axial, points 21 to 84
6.5
Strength to Weight: Bending, points 20 to 50
8.6
Thermal Diffusivity, mm2/s 12
17
Thermal Shock Resistance, points 20 to 78
8.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 1.1 to 1.2
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.2
72 to 79.5
Iron (Fe), % 96.6 to 98.4
0 to 0.25
Lead (Pb), % 0
13 to 17
Manganese (Mn), % 0.1 to 0.4
0 to 0.2
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0.5 to 2.0
Phosphorus (P), % 0 to 0.030
0 to 0.1
Silicon (Si), % 0.1 to 0.4
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.1
Tin (Sn), % 0
6.0 to 8.0
Tungsten (W), % 0 to 0.15
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0
0 to 2.0