MakeItFrom.com
Menu (ESC)

AISI W5 Steel vs. C86700 Bronze

AISI W5 steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI W5 steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 72
41
Tensile Strength: Ultimate (UTS), MPa 600 to 2360
630

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Melting Completion (Liquidus), °C 1450
880
Melting Onset (Solidus), °C 1410
860
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 45
89
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
17
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
19

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.6
2.9
Embodied Energy, MJ/kg 21
49
Embodied Water, L/kg 48
340

Common Calculations

Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 21 to 84
22
Strength to Weight: Bending, points 20 to 50
21
Thermal Diffusivity, mm2/s 12
28
Thermal Shock Resistance, points 20 to 78
21

Alloy Composition

Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 1.1 to 1.2
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.2
55 to 60
Iron (Fe), % 96.6 to 98.4
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 0.1 to 0.4
1.0 to 3.5
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.2
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.1 to 0.4
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.5
Tungsten (W), % 0 to 0.15
0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0