MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. 8090 Aluminum

AM100A magnesium belongs to the magnesium alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
67
Elongation at Break, % 1.0 to 6.8
3.5 to 13
Fatigue Strength, MPa 48 to 70
91 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
25
Tensile Strength: Ultimate (UTS), MPa 160 to 270
340 to 490
Tensile Strength: Yield (Proof), MPa 78 to 140
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 140
190
Melting Completion (Liquidus), °C 590
660
Melting Onset (Solidus), °C 460
600
Specific Heat Capacity, J/kg-K 990
960
Thermal Conductivity, W/m-K 73
95 to 160
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
20
Electrical Conductivity: Equal Weight (Specific), % IACS 59
66

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
8.6
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 1000
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 15
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 210
340 to 1330
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
50
Strength to Weight: Axial, points 25 to 44
34 to 49
Strength to Weight: Bending, points 38 to 54
39 to 50
Thermal Diffusivity, mm2/s 43
36 to 60
Thermal Shock Resistance, points 9.7 to 17
15 to 22

Alloy Composition

Aluminum (Al), % 9.3 to 10.7
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
1.0 to 1.6
Iron (Fe), % 0
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 87.9 to 90.6
0.6 to 1.3
Manganese (Mn), % 0.1 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.3
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.3
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0
0 to 0.15