MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. AISI 384 Stainless Steel

AM100A magnesium belongs to the magnesium alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Tensile Strength: Ultimate (UTS), MPa 160 to 270
480

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 140
910
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 460
1380
Specific Heat Capacity, J/kg-K 990
480
Thermal Conductivity, W/m-K 73
16
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 22
3.7
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1000
150

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 70
24
Strength to Weight: Axial, points 25 to 44
17
Strength to Weight: Bending, points 38 to 54
17
Thermal Diffusivity, mm2/s 43
4.3
Thermal Shock Resistance, points 9.7 to 17
11

Alloy Composition

Aluminum (Al), % 9.3 to 10.7
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
60.9 to 68
Magnesium (Mg), % 87.9 to 90.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 2.0
Nickel (Ni), % 0 to 0.010
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.3
0