MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. EN AC-46400 Aluminum

AM100A magnesium belongs to the magnesium alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
72
Elongation at Break, % 1.0 to 6.8
1.1 to 1.7
Fatigue Strength, MPa 48 to 70
75 to 85
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Tensile Strength: Ultimate (UTS), MPa 160 to 270
170 to 310
Tensile Strength: Yield (Proof), MPa 78 to 140
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
520
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 590
610
Melting Onset (Solidus), °C 460
570
Specific Heat Capacity, J/kg-K 990
890
Thermal Conductivity, W/m-K 73
130
Thermal Expansion, µm/m-K 25
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
33
Electrical Conductivity: Equal Weight (Specific), % IACS 59
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
7.8
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1000
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 15
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 210
82 to 500
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 70
52
Strength to Weight: Axial, points 25 to 44
18 to 32
Strength to Weight: Bending, points 38 to 54
26 to 38
Thermal Diffusivity, mm2/s 43
55
Thermal Shock Resistance, points 9.7 to 17
7.8 to 14

Alloy Composition

Aluminum (Al), % 9.3 to 10.7
85.4 to 90.5
Copper (Cu), % 0 to 0.1
0.8 to 1.3
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 87.9 to 90.6
0.25 to 0.65
Manganese (Mn), % 0.1 to 0.35
0.15 to 0.55
Nickel (Ni), % 0 to 0.010
0 to 0.2
Silicon (Si), % 0 to 0.3
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.8
Residuals, % 0
0 to 0.25

Comparable Variants