MakeItFrom.com
Menu (ESC)

AM100A Magnesium vs. S44635 Stainless Steel

AM100A magnesium belongs to the magnesium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM100A magnesium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 1.0 to 6.8
23
Fatigue Strength, MPa 48 to 70
390
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 90 to 150
450
Tensile Strength: Ultimate (UTS), MPa 160 to 270
710
Tensile Strength: Yield (Proof), MPa 78 to 140
580

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 460
1420
Specific Heat Capacity, J/kg-K 990
470
Thermal Conductivity, W/m-K 73
16
Thermal Expansion, µm/m-K 25
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 59
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 22
4.4
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1000
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.3 to 15
150
Resilience: Unit (Modulus of Resilience), kJ/m3 66 to 210
810
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 70
25
Strength to Weight: Axial, points 25 to 44
25
Strength to Weight: Bending, points 38 to 54
23
Thermal Diffusivity, mm2/s 43
4.4
Thermal Shock Resistance, points 9.7 to 17
23

Alloy Composition

Aluminum (Al), % 9.3 to 10.7
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
61.5 to 68.5
Magnesium (Mg), % 87.9 to 90.6
0
Manganese (Mn), % 0.1 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.010
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.3
0