MakeItFrom.com
Menu (ESC)

AM50A Magnesium vs. ASTM A182 Grade F24

AM50A magnesium belongs to the magnesium alloys classification, while ASTM A182 grade F24 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM50A magnesium and the bottom bar is ASTM A182 grade F24.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58
210
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 70
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 120
420
Tensile Strength: Ultimate (UTS), MPa 210
670
Tensile Strength: Yield (Proof), MPa 120
460

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 120
460
Melting Completion (Liquidus), °C 620
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 65
39
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 88
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
2.3
Embodied Energy, MJ/kg 160
33
Embodied Water, L/kg 990
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
140
Resilience: Unit (Modulus of Resilience), kJ/m3 150
570
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 35
24
Strength to Weight: Bending, points 47
22
Thermal Diffusivity, mm2/s 39
11
Thermal Shock Resistance, points 13
19

Alloy Composition

Aluminum (Al), % 4.4 to 5.4
0 to 0.020
Boron (B), % 0
0.0015 to 0.0070
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
2.2 to 2.6
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0040
94.5 to 96.1
Magnesium (Mg), % 93.7 to 95.3
0
Manganese (Mn), % 0.26 to 0.6
0.3 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.0020
0
Nitrogen (N), % 0
0 to 0.12
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0.15 to 0.45
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.060 to 0.1
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 0 to 0.22
0