MakeItFrom.com
Menu (ESC)

AM60B Magnesium vs. AWS E409Nb

AM60B magnesium belongs to the magnesium alloys classification, while AWS E409Nb belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AM60B magnesium and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 11
23
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Tensile Strength: Ultimate (UTS), MPa 230
500
Tensile Strength: Yield (Proof), MPa 130
380

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 61
25
Thermal Expansion, µm/m-K 26
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 72
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
13
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
2.9
Embodied Energy, MJ/kg 160
42
Embodied Water, L/kg 990
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
380
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 38
18
Strength to Weight: Bending, points 50
18
Thermal Diffusivity, mm2/s 37
6.8
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 14
Copper (Cu), % 0 to 0.010
0 to 0.75
Iron (Fe), % 0 to 0.0050
80.2 to 88.5
Magnesium (Mg), % 92.6 to 94.3
0
Manganese (Mn), % 0.24 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.0020
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.22
0