MakeItFrom.com
Menu (ESC)

AS41A Magnesium vs. EN 1.4006 Stainless Steel

AS41A magnesium belongs to the magnesium alloys classification, while EN 1.4006 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AS41A magnesium and the bottom bar is EN 1.4006 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 11
16 to 23
Fatigue Strength, MPa 100
150 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 130
370 to 460
Tensile Strength: Ultimate (UTS), MPa 230
590 to 750
Tensile Strength: Yield (Proof), MPa 140
230 to 510

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 110
740
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 68
30
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 92
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
7.0
Density, g/cm3 1.6
7.7
Embodied Carbon, kg CO2/kg material 23
1.9
Embodied Energy, MJ/kg 160
27
Embodied Water, L/kg 980
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
99 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
140 to 660
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 38
21 to 27
Strength to Weight: Bending, points 50
20 to 24
Thermal Diffusivity, mm2/s 41
8.1
Thermal Shock Resistance, points 14
21 to 26

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.060
0
Iron (Fe), % 0
83.1 to 88.4
Magnesium (Mg), % 92.8 to 95.8
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.030
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.12
0