MakeItFrom.com
Menu (ESC)

AS41A Magnesium vs. EN 1.4410 Stainless Steel

AS41A magnesium belongs to the magnesium alloys classification, while EN 1.4410 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AS41A magnesium and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 11
24
Fatigue Strength, MPa 100
410
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
81
Shear Strength, MPa 130
540
Tensile Strength: Ultimate (UTS), MPa 230
850
Tensile Strength: Yield (Proof), MPa 140
600

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 68
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 92
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
20
Density, g/cm3 1.6
7.8
Embodied Carbon, kg CO2/kg material 23
4.0
Embodied Energy, MJ/kg 160
56
Embodied Water, L/kg 980
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
180
Resilience: Unit (Modulus of Resilience), kJ/m3 220
880
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 38
30
Strength to Weight: Bending, points 50
26
Thermal Diffusivity, mm2/s 41
4.0
Thermal Shock Resistance, points 14
23

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.060
0
Iron (Fe), % 0
58.1 to 66.8
Magnesium (Mg), % 92.8 to 95.8
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0 to 0.030
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.12
0