MakeItFrom.com
Menu (ESC)

AS41A Magnesium vs. EN 1.4951 Stainless Steel

AS41A magnesium belongs to the magnesium alloys classification, while EN 1.4951 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AS41A magnesium and the bottom bar is EN 1.4951 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 11
38
Fatigue Strength, MPa 100
190
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
79
Shear Strength, MPa 130
430
Tensile Strength: Ultimate (UTS), MPa 230
630
Tensile Strength: Yield (Proof), MPa 140
220

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 620
1410
Melting Onset (Solidus), °C 570
1360
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 68
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 92
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
25
Density, g/cm3 1.6
7.9
Embodied Carbon, kg CO2/kg material 23
4.3
Embodied Energy, MJ/kg 160
61
Embodied Water, L/kg 980
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 50
21
Thermal Diffusivity, mm2/s 41
3.9
Thermal Shock Resistance, points 14
14

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.060
0
Iron (Fe), % 0
49.1 to 57
Magnesium (Mg), % 92.8 to 95.8
0
Manganese (Mn), % 0.2 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.030
19 to 22
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.12
0