MakeItFrom.com
Menu (ESC)

AS41A Magnesium vs. C85200 Brass

AS41A magnesium belongs to the magnesium alloys classification, while C85200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AS41A magnesium and the bottom bar is C85200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 11
28
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 230
270
Tensile Strength: Yield (Proof), MPa 140
95

Thermal Properties

Latent Heat of Fusion, J/g 370
180
Maximum Temperature: Mechanical, °C 110
140
Melting Completion (Liquidus), °C 620
940
Melting Onset (Solidus), °C 570
930
Specific Heat Capacity, J/kg-K 1000
380
Thermal Conductivity, W/m-K 68
84
Thermal Expansion, µm/m-K 26
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
18
Electrical Conductivity: Equal Weight (Specific), % IACS 92
19

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 1.6
8.4
Embodied Carbon, kg CO2/kg material 23
2.8
Embodied Energy, MJ/kg 160
46
Embodied Water, L/kg 980
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
59
Resilience: Unit (Modulus of Resilience), kJ/m3 220
42
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 72
19
Strength to Weight: Axial, points 38
8.9
Strength to Weight: Bending, points 50
11
Thermal Diffusivity, mm2/s 41
27
Thermal Shock Resistance, points 14
9.3

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0 to 0.060
70 to 74
Iron (Fe), % 0
0 to 0.6
Lead (Pb), % 0
1.5 to 3.8
Magnesium (Mg), % 92.8 to 95.8
0
Manganese (Mn), % 0.2 to 0.5
0
Nickel (Ni), % 0 to 0.030
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.5 to 1.5
0 to 0.050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0.7 to 2.0
Zinc (Zn), % 0 to 0.12
20 to 27
Residuals, % 0
0 to 0.9