MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F10 vs. 328.0 Aluminum

ASTM A182 grade F10 belongs to the iron alloys classification, while 328.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F10 and the bottom bar is 328.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
60 to 82
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 34
1.6 to 2.1
Fatigue Strength, MPa 180
55 to 80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 630
200 to 270
Tensile Strength: Yield (Proof), MPa 230
120 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
510
Maximum Temperature: Mechanical, °C 600
180
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
30
Electrical Conductivity: Equal Weight (Specific), % IACS 17
99

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 3.6
7.8
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 120
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.8 to 5.0
Resilience: Unit (Modulus of Resilience), kJ/m3 140
92 to 200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
21 to 28
Strength to Weight: Bending, points 21
28 to 34
Thermal Shock Resistance, points 18
9.2 to 12

Alloy Composition

Aluminum (Al), % 0
84.5 to 91.1
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 7.0 to 9.0
0 to 0.35
Copper (Cu), % 0
1.0 to 2.0
Iron (Fe), % 66.5 to 72.4
0 to 1.0
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0.5 to 0.8
0.2 to 0.6
Nickel (Ni), % 19 to 22
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 1.4
7.5 to 8.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5