MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F10 vs. EN AC-46300 Aluminum

ASTM A182 grade F10 belongs to the iron alloys classification, while EN AC-46300 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F10 and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
91
Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 180
79
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 630
200
Tensile Strength: Yield (Proof), MPa 230
110

Thermal Properties

Latent Heat of Fusion, J/g 290
490
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1370
530
Specific Heat Capacity, J/kg-K 470
880
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
27
Electrical Conductivity: Equal Weight (Specific), % IACS 17
84

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 3.6
7.7
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 120
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 140
89
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
27
Thermal Shock Resistance, points 18
9.1

Alloy Composition

Aluminum (Al), % 0
84 to 90
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 7.0 to 9.0
0
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 66.5 to 72.4
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.3 to 0.6
Manganese (Mn), % 0.5 to 0.8
0.2 to 0.65
Nickel (Ni), % 19 to 22
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 1.4
6.5 to 8.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.65
Residuals, % 0
0 to 0.55