MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F10 vs. EN AC-51200 Aluminum

ASTM A182 grade F10 belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F10 and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
80
Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 180
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
25
Tensile Strength: Ultimate (UTS), MPa 630
220
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
22
Electrical Conductivity: Equal Weight (Specific), % IACS 17
74

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 3.6
9.6
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 140
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
31
Thermal Shock Resistance, points 18
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0.1 to 0.2
0
Chromium (Cr), % 7.0 to 9.0
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 66.5 to 72.4
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0.5 to 0.8
0 to 0.55
Nickel (Ni), % 19 to 22
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 1.4
0 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15