MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. 6005A Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 23
8.6 to 17
Fatigue Strength, MPa 320
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 450
120 to 180
Tensile Strength: Ultimate (UTS), MPa 710
190 to 300
Tensile Strength: Yield (Proof), MPa 450
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1490
650
Melting Onset (Solidus), °C 1440
600
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 24
180 to 190
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
47 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 12
150 to 170

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.3
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 100
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 520
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
20 to 30
Strength to Weight: Bending, points 22
27 to 36
Thermal Diffusivity, mm2/s 6.4
72 to 79
Thermal Shock Resistance, points 19
8.6 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.020
96.5 to 99.1
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0 to 0.3
Copper (Cu), % 0.3 to 1.7
0 to 0.3
Iron (Fe), % 81.3 to 87.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 0.7
0 to 0.5
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0.5 to 0.9
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15