MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. 7022 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
6.3 to 8.0
Fatigue Strength, MPa 320
140 to 170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Shear Strength, MPa 450
290 to 320
Tensile Strength: Ultimate (UTS), MPa 710
490 to 540
Tensile Strength: Yield (Proof), MPa 450
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 600
200
Melting Completion (Liquidus), °C 1490
640
Melting Onset (Solidus), °C 1440
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 24
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
21
Electrical Conductivity: Equal Weight (Specific), % IACS 12
65

Otherwise Unclassified Properties

Base Metal Price, % relative 12
10
Density, g/cm3 8.0
2.9
Embodied Carbon, kg CO2/kg material 3.0
8.5
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 100
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1100 to 1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 25
47 to 51
Strength to Weight: Bending, points 22
47 to 50
Thermal Diffusivity, mm2/s 6.4
54
Thermal Shock Resistance, points 19
21 to 23

Alloy Composition

Aluminum (Al), % 0 to 0.020
87.9 to 92.4
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0.1 to 0.3
Copper (Cu), % 0.3 to 1.7
0.5 to 1.0
Iron (Fe), % 81.3 to 87.7
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 0.7
0.1 to 0.4
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.2
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0 to 0.010
0 to 0.2
Residuals, % 0
0 to 0.15