MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. 7076 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
160
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 23
6.2
Fatigue Strength, MPa 320
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
27
Shear Strength, MPa 450
310
Tensile Strength: Ultimate (UTS), MPa 710
530
Tensile Strength: Yield (Proof), MPa 450
460

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 600
170
Melting Completion (Liquidus), °C 1490
630
Melting Onset (Solidus), °C 1440
460
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 24
140
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
35
Electrical Conductivity: Equal Weight (Specific), % IACS 12
100

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 100
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
31
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 25
49
Strength to Weight: Bending, points 22
48
Thermal Diffusivity, mm2/s 6.4
54
Thermal Shock Resistance, points 19
23

Alloy Composition

Aluminum (Al), % 0 to 0.020
86.9 to 91.2
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0
Copper (Cu), % 0.3 to 1.7
0.3 to 1.0
Iron (Fe), % 81.3 to 87.7
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 0.7
0.3 to 0.8
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.2
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
7.0 to 8.0
Zirconium (Zr), % 0 to 0.010
0
Residuals, % 0
0 to 0.15