MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. 8090 Aluminum

ASTM A182 grade F122 belongs to the iron alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
67
Elongation at Break, % 23
3.5 to 13
Fatigue Strength, MPa 320
91 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Tensile Strength: Ultimate (UTS), MPa 710
340 to 490
Tensile Strength: Yield (Proof), MPa 450
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 600
190
Melting Completion (Liquidus), °C 1490
660
Melting Onset (Solidus), °C 1440
600
Specific Heat Capacity, J/kg-K 470
960
Thermal Conductivity, W/m-K 24
95 to 160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
20
Electrical Conductivity: Equal Weight (Specific), % IACS 12
66

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 3.0
8.6
Embodied Energy, MJ/kg 44
170
Embodied Water, L/kg 100
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 520
340 to 1330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
34 to 49
Strength to Weight: Bending, points 22
39 to 50
Thermal Diffusivity, mm2/s 6.4
36 to 60
Thermal Shock Resistance, points 19
15 to 22

Alloy Composition

Aluminum (Al), % 0 to 0.020
93 to 98.4
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0
Chromium (Cr), % 10 to 11.5
0 to 0.1
Copper (Cu), % 0.3 to 1.7
1.0 to 1.6
Iron (Fe), % 81.3 to 87.7
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 0
0.6 to 1.3
Manganese (Mn), % 0 to 0.7
0 to 0.1
Molybdenum (Mo), % 0.25 to 0.6
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.010
0 to 0.1
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0 to 0.010
0.040 to 0.16
Residuals, % 0
0 to 0.15