MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F122 vs. ACI-ASTM CB6 Steel

Both ASTM A182 grade F122 and ACI-ASTM CB6 steel are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F122 and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
18
Fatigue Strength, MPa 320
410
Poisson's Ratio 0.28
0.28
Reduction in Area, % 45
40
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 710
880
Tensile Strength: Yield (Proof), MPa 450
660

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Mechanical, °C 600
870
Melting Completion (Liquidus), °C 1490
1440
Melting Onset (Solidus), °C 1440
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 24
17
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.5
Embodied Energy, MJ/kg 44
36
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 17
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
150
Resilience: Unit (Modulus of Resilience), kJ/m3 520
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
32
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 6.4
4.6
Thermal Shock Resistance, points 19
31

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.070 to 0.14
0 to 0.060
Chromium (Cr), % 10 to 11.5
15.5 to 17.5
Copper (Cu), % 0.3 to 1.7
0
Iron (Fe), % 81.3 to 87.7
74.4 to 81
Manganese (Mn), % 0 to 0.7
0 to 1.0
Molybdenum (Mo), % 0.25 to 0.6
0 to 0.5
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Niobium (Nb), % 0.040 to 0.1
0
Nitrogen (N), % 0.040 to 0.1
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Vanadium (V), % 0.15 to 0.3
0
Zirconium (Zr), % 0 to 0.010
0